Применение программно-методического комплекса *Na Spectra Analysis System -SAS Na M3* для радионуклидного анализа проб сбросных вод и аэрозольных выбросов АЭС РФ

В.В Дровников, Н.Ю. Егоров, В.М. Живун, А.А. Кадушкин, В.В. Коваленко, А.И. Новоселов

Лаборатория «Ядерно-физические технологии радиационного контроля» телефон: 903 - 581- 85 - 33 e-mail: <u>egorov@radiation.ru</u> web-adpec: <u>www.radiation.ru</u>

Постановка задачи

- НРGe гамма-спектрометр идеальный инструмент в смысле качества результатов анализа и гарантированной возможности их получения - радиационного контроля сбросных вод и вентвыбросов АЭС с нижней границей измеряемой активности ~ 0.5 Бк / образец.
- В оперативном контроле сбросных вод и вентвыбросов АЭС применение HPGe гамма-спектрометров затруднительно по целому ряду соображений – эксплуатационным, технологическим, финансово-экономическим и организационным и т.д.
- Целесообразно оценить возможность использования
 Nal сцинтилляционных гамма-спектрометров в системах контроля допустимых сбросов и выбросов АЭС.

Низкофоновая защитная камера НЗК-01

Цифровой спектрометрический процессор. Спектрометрический модуль.

Программа SASNaMeas управления работой комплекса Nal ПАК-01

Почему не метод пиков

Программа SASNaM3 обработки спектров сцинтилляционных детекторов модифицированным матричным методом – M3.

Матричный метод обработки спектров - решение системы линейных уравнений

$$\mathbf{A}[i] = \boldsymbol{\Sigma} \boldsymbol{Q}_j \cdot \boldsymbol{B}_j [i], \tag{1}$$

где **А[i]** – измеренный спектр,

B_{*i*}[*i*] – спектры-стандарты, образующие матрицу отклика,

Q_{*i*} – активности радионуклидов в измерительном образце.

Основная проблема матричного метода – это плохая обусловленность системы (1), приводящая к большим погрешностям оценок **Q**_i.

Модифицированный матричный метод - решение системы линейных уравнений

 $L(A[i]) = \Sigma \ Q_j \cdot L(B_j[i]),$

образованной применением к системе (1) линейного оператора L, такого, что новая система уравнений имеет то же решение, что и (1), но лучше обусловлена и поэтому существенно менее чувствительна к статистическим флуктуациям данных.

О спектрах-стандартах

- Спектры-стандарты изготавливаются расчетным путем с помощью программы GEANT4.
- Возможность оперативно и финансово незатратно создать библиотеку спектров-стандартов для любых наборов:
- радионуклидов;
- размеров и конфигураций детекторов
- размеров и конфигураций измерительных образцов.
- Для целого ряда радионуклидов отсутствует практическая возможность изготовления калибровочных источников.
- Отсутствует необходимость в калибровочных источниках.
- Оптимизация функционирования обработочной программы SASNaM3 при использовании расчетных спектров-стандартов, в том числе для повышения точности.

Распределения активности радионуклидов в фильтрах АФА из главной ВТ 3-4 блоков НВАЭС

Распределения активности радионуклидов в фильтрах АФА

Распределения активности радионуклидов в фильтрах АФА

Результаты определения активности фильтров АФА

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.38.002.A № 60634

Срок действия до 25 ноября 2020 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Комплексы программно-аппаратные гамма-спектрометрические Nal ПАК

ИЗГОТОВИТЕЛЬ Общество с ограниченной ответственностью "ЭкоСфера" -ООО "ЭкоСфера", г. Москва

РЕГИСТРАЦИОННЫЙ № 62397-15

ДОКУМЕНТ НА ПОВЕРКУ СФАТ.412125.005 РЭ, Раздел 6

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 25 ноября 2015 г. № 1453

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ФИЗИКО-ТЕХНИЧЕСКИХ И РАДИОТЕХНИЧЕСКИХ ИЗМЕРЕНИЙ ФГУП ВНИИФТРИ

вниифтри

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

об аттестации методики (метода) измерений (методики радиационного контроля) № 41172.16334/ RA.RU.311243-2015

Методика измерений активности гамма-излучающих радионуклидов в счетных образцах, приготовленных из проб допустимых выбросов и сбросов Нововоронежской АЭС, с применением гамма-спектрометрического комплекса Nal ПAK разработанная ООО «ЭкоСфера» и НИЛ «Ядерно-физические технологии радиационного контроля» Национального исследовательского ядерного университета «МИФИ» и изложенная в рокументе «Методика выполнения измерений активности гамма-излучающих радионуклидов в счетных образцах, приготовленных из проб допустимых выбросов и сбросов Нововоронежской АЭС, с применением гамма-спектрометрического комплекса Nal ПAК», на 36 листах, утвержденном главным инженером Нововоронежской АЭС в 2016 г., аттестована ФГУП «ВНИИФТРИ» на соответствие метрологическим требованиям ГК Росатом (приказ N 1/10-НПА от 31.10.2013 г.) и ГОСТ 8.638 в порядке, определенном Минпромторгом России (приказ N 4091 от 15.12.2015 г.).

Методика основана на использовании средства измерений утвержденного типа с программой «Na Spectra Analysis System M3», позволяющей определять эффективность спектрометрического комплекса для реальных условий измерения.

Методика устанавливает порядок и способы выполнения измерений, обработки результатов и оценки их неопределенности. Методика обеспечивает измерения активности гамма-излучающих радионуклидов с энергией гамма-излучения 50 кзВ-3 МзВ в счетных образцах, изготовленных из проб допустимых сбросов и выбросов АЭС в диапазоне от 0.5 Бк до 10⁵ Бк при времени измерения не более 1 часа. Расширенная неопределенность измерений активности гамма-излучающих радионуклидов в СОБ от 15 % до 50 % при доверительной вероятности P = 0.95, времени измерения не более 1 часа. Оценка неопределенности проводится для каждого конкрстного измерения.

Методика аттестована по результатам метрологической экспертизы материалов по разработке методики и результатов ее исследования.

MO dapas «300», Mocasa, 2015, «8», a.1105

Значения активности радионуклидов в единичном фильтре АФА.

НРGеспектрометр.Время измерения 58.93 часа.

Нуклиды	Α	±Δ/ Бк	۹,	δ Α , %
Co-60	1.75	±	0.12	7
Co-58	0.81	±	0.05	6.75
Co-57	0.014	±	0.003	20.8
Cs-137	0.007	±	0.004	59.7
Cs-134	0.00	±	0.05	
Mn-54	0.36	±	0.02	5.8
Cr-51	0.57	±	0.19	34
Nb-95	0.48	±	0.04	8.7
Zr-95	0.051	±	0.014	27.7
Fe-59	0.044	±	0.021	48.2
Ag-110m	0.031	±	0.013	41.3
Ru-103	0.018	±	0.015	84
Zn-65	0.021	±	0.011	50
Sb-124	0.35	±	0.04	11.5

Сравнение результатов определения активности счетного образца «пачка 30 фильтров АФА», полученных различными способами

Активность долгоживущих радионуклидов в счетном образце «пачка 30 фильтров АФА», Бк															
Нуклид	«Паспортные» значения активности			Методика «пачка 30 фильтров»			Обработка суммы « 30 спектров» Т _ж = 7200 с (НИЛ ЯФТРК)				Сложение значений активности, полученных при обработке 30 спектров с Т _ж = 7200 с (НИЛ ЯФТРК)				
	Α ± Δ/	A	δA %	A	±Δ	A	δA %	А	±Δ	A	δA %	A :	± 🗛		δA %
Co-60	4.46 ±	0.31	7	2.00	±	0.01	2	4.39	±	0.31	7	4.43	±	1.06	8
Co-58	2.57 ±	0.28	11	1.29	±	0.20	3	2.61	±	0.29	11	2.87	±	0.35	12
Cs-137	1.39 ±	0.15	11	1.00	±	0.01	3	1.43	±	0.14	10	1.43	±	0.15	10.5
Cs-134	0.029 ±	0.014	49			=			<	0.13		0.136	±	0.090	66
Mn-54	1.07 ±	0.08	7	0.50	±	0.02	4	1.14	±	0.15	13	1.16	±	0.16	14
Cr-51	10.7 ±	1.1	10	6.75	±	0.27	4	12.14	±	1.24	32	16.1	±	4.7	29
Nb-95	1.29 ±	0.32	25	0.39	±	0.02	5	1.96	±	0.49	25	1.61	±	0.47	29
Sb-124	0.50 ±	0.06	12			=		1.07	±	0.49	46	0.64	±	0.26	40

Выб	брос за месяц	Выброс за квартал Выбро	ос за год			
Акт	ивности выбр	оса Гистограмма выброса				
№ Нуклид		Выброс за месяц, МБк	Уровень, МБк	Доля от уровня, %		
1	Ag-110m	0.150 ± 0.029				
2	Co-58	0.060 ± 0.028				
3	Cr-51	0.47 ± 0.33	7.50E+01	3.24E-02 %		
4	Cr-51	0.96 ± 0.44				
5	Cs-134	0 ± 0.028	7.50E+01	3.79E-02 %		
6	Cs-137	0.078 ± 0.054	1.70E+02	7.72E-02 %		
7	Fe-59	0.054 ± 0.035				
8	1-131	0.044 ± 0.064	1.50E+03	7.19E-03 %		
9	Mn-54	0 ± 0.028				
10	Nb-95	0 ± 0.035				
11	Ru-106	0 ± 0.045				
12	Sc-46	0 ± 0.040				
13	Zn-65	0 ± 0.087				
14	Zr-95	0.121 ± 0.044				

Активности | Гистограмма активностей Выброс за месяц | Активности выброса | Гистограмма выброса |

Выброс за месяц, МБк

Активности Гистограмма активностей Выброс за месяц Активности выброса Гистограмма выброса Выброс за месяц, МБк Со-58 49-110m Со-58 2r-95 Со-60 2n-65 Сс-51 5с-46 Св-134 Яциности Выброс за месяц

Быстрая идентификация радионуклидов

с помощью программы «Na Spectra Analysis System» - SAS Na M3

в задаче контроля РДМ

спектрометрическими портальными мониторами

В.В Дровников, Н.Ю. Егоров, В.М. Живун, А.А. Кадушкин, В.В. Коваленко, А.И. Новоселов

Лаборатория «Ядерно-физические технологии радиационного контроля» телефон: 903 - 581- 85 - 33 e-mail: <u>egorov@radiation.ru</u> web-adpec: <u>www.radiation.ru</u> Быстрая идентификация радионуклидов по результатам гамма-спектрометрических измерений представляется необходимой в связи с задачей в рамках задачи «разбраковки» <u>В Реальном времени</u> плотного пассажиропотока:

- на свободных от «дополнительных» радионуклидов пассажиров
- на пассажиров носителей медицинских и/или естественных радионуклидов;
- **4** на пассажиров носителей техногенных радионуклидов.

«Быстрая» в данном контексте означает не только то, что процедура обработки с целью идентификации занимает малое время условно ~ 1 секунда и менее, но и то, что идентификация должна быть выполнена на основании обработки спектра с плохой статистикой (статистически слабо обусловленный спектр).

Медицинские радионуклиды:¹³¹I, ¹³³Xe, ^{99m}TcТехногенные радионуклиды:¹³⁷Cs, ⁶⁰CoЕстественные радионуклиды:⁴⁰K, ²²⁶Ra, ²³²Th

